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Abstract
Deep learning algorithms have begun to be used in medical image processing studies, especially in the last decade. MRI is
used in the diagnosis of Alzheimer’s disease, a type of dementia disease, which is the 7th among the diseases that cause death
in the world. Alzheimer’s disease has no known cure in the literature, so it is important to attempt treatment before starting the
irreversible path by diagnosing the pre-illness stages. In this study, the previous stages of Alzheimer’s disease were classified
as normal, mild cognitive impairment, and Alzheimer’s disease through brainMRIs. Different models using CNN architecture
were used to classify 2182 image objects obtained from the ADNI database. The study was presented in a very comprehensive
comparison framework, and the performances of 29 different pre-trained models on images were evaluated. The accuracy
values of each model and the precision, specificity, and sensitivity rates of each class were determined. In the study, the
EfficientNetB0 model provided the highest accuracy at the test stage with an accuracy rate of 92.98%. In the comparative
evaluation stage with the confusion matrix, the highest rates of precision, sensitivity, and specificity values of the Alzheimer’s
disease class were achieved by EfficientNetB3 (89.78%), EfficientNetB2 (94.42%), and EfficientNetB3 (97.28%) models,
respectively. The results of the study showed that among the pre-trained models, EfficientNet models achieved a high rate of
classification performance as the models with the highest performance. This study will contribute to clinical studies in early
prevention by detecting Alzheimer’s disease before it occurs.

Keywords Deep learning · Convolutional neural network · Alzheimer’s disease · Mild cognitive impairment · Magnetic
resonance image classification · Pre-trained models

1 Introduction

Alzheimer’s disease (AD) and other forms of dementia
ranked as the 7th leading cause of death [1]. AD is the most
common type of dementia covering 60%–80% of dementia
cases. Dementia is a syndrome in which there is a deterio-
ration in cognitive function beyond what might be expected
from normal aging. It causes damage to memory, thinking,
orientation, comprehension, calculation, learning capacity,
language, and ability to distinguish but consciousness is not
affected. The impairment in cognitive function is commonly
accompanied and occasionally preceded, by deterioration
in emotional control, social behavior, or motivation [2].
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Changes in amyloid precursor protein (APP) cleavage and
production of the APP fragment betaamyloid (Aβ) along
with hyperphosphorylated tau protein aggregation coalesce
to cause reduction in synaptic strength, synaptic loss, and
neurodegeneration. Metabolic, vascular, and inflammatory
changes, as well as comorbid pathologies, are key compo-
nents of the disease process [3].

Dementia is usually chronic or progressive. This progres-
sive process may follow a path starting from the cognitively
normal (CN) stage, resulting in mild cognitive impairment
(MCI) stage, and AD. For being incurable neurodegenera-
tive disorder [4,5], it is important to detect early stages of
AD before it happens. The greatest risk factors for AD are
old age, family history, and the presence of the Apolipopro-
tein e4 (ApoE4) gene in a person’s genome [6].MCI is one of
the early stages of AD and causes a slight but noticeable and
measurable decline in cognitive abilities, including memory
and thinking skillswhichmay causeADor another dementia.
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Early detection of MCI and appropriate treatment methods
can delay the development of AD [7].

Due to the irreversible end of cognitive disorders, various
studies are continuing to detect in the progressive process.
Current medical research has been supported by state-of-
the-art analysis algorithms, especially in recent years, so AD
researches. Most researches are based on brain images and
different graph-based learning [8] algorithms used to identify
subjects at different progression stages of AD.Not only brain
images used for diagnosis of disease but also different fac-
tors such as gender, age, education [9] are being investigated
for neurocognitive network connectivity differences between
healthy aging andMCI and associations with cognitive status
and these factors [10]. In different studies, biological fluid
biomarkers such as invasive CSF and non-invasive (blood,
saliva, urine, and tears) biomarkers [11,12], dry biomark-
ers such as structural and functional imaging, and ocular
biomarkers of AD [12] have been extensively examined, and
the results have been explained.While some research focuses
on clinical results to investigate the relationship between pro-
granulin expression in peripheral blood and clinical diagnosis
of AD and MCI using microarrays [13] and variant analysis
[14],methods such asmachine learning (ML) and deep learn-
ing (DL) have been used frequently in the context of artificial
intelligence (AI) studies [15], especially recently.

Since the day it started with the question “Can machines
think?” [16], AI [17] has become to produce high accuracy
results for many problems. The neurocognitive researches
proposed different ML algorithms such as dual-tree complex
wavelet transforms, principal component analysis, linear dis-
criminant analysis, extreme learning machine [18], dynamic
connectivity networks learning framework [19], one-way
analysis of variance analysis on the multiscale entropy
[20], N-fold cross-validation [21], Bayesian latent time joint
mixed-effects [22], and ensemble feature selection approach
[23] for early detection and classification of AD and formini-
mizing themortality rate on brainmagnetic resonance images
(MRIs). TheMRI scan of the brain shows the brain structures,
shrinkage of the brain, vascular irregularities, and any other
structural changes that might cause cognitive dysfunction
[24]. Besides not only MRIs used for detection and classifi-
cation but also positron emission tomography (PET) images
are used with a random forest-robust support vector machine
for the identification of MCI [25].

DL algorithms have begun to assist in different applica-
tions such as health services, translation services, advertising
services, driverless vehicles, film suggestions, chatbot, page
suggestions, and many more with successful classification
and/or detection solutions [26]. Different DL approaches
were also used for AD recognition [27] and to predict
MCI-to-AD conversion such as convolutional neural net-
work (CNN) [28]. Classification studieswere performedwith
multiple cluster dense convolutional neural networks [29],

randomneural network cluster [30], and diagnosis researches
performed with a combination of sparse regression models
with deep neural network (DNN) [31]. These DL algorithms
used MRIs for analyses besides PET images were used to
construct cascaded CNNs to learn the multi-level and multi-
modal features [32] and to predict the final diagnosis of AD
and MCI [33].

As being widely used in computer identification,
autonomous vehicles, natural language processing, hand-
written character recognition, signature verification, voice
and video recognition, big data [34], image processing, and
medical image processing; DL approaches are necessary for
automated medical decision-making systems because non-
automated processes are more expensive, demand intensive
labor and therefore subject to human-induced errors [35].
In this study, performance comparisons and classification
successes of pre-trained CNN architectures such as AlexNet
[36], ZFNet [37], ResNet 50-101-152-50V2-101V2-152V2
[38], and VGG 16-19 [39], which are successful on the Ima-
geNet competition (ImageNet Large Scale Visual Recogni-
tion Challenge - ILSVRC), and some other pre-trained mod-
els such as LeNet [40], Xception, MobileNet, MobileNetV2,
InceptionV3, InceptionResNetV2, DenseNet 121-169-201,
NASNetMobile,NASNetLarge, andEfficientNetB0-B7 from
Keras Application Library [41] (29 models in total) were
evaluated on CN, MCI, and AD with MRIs data from
Alzheimer’sDiseaseNeuroimaging Initiative [42] study plat-
form.

2 Materials andMethods

Data used in the preparation of this articlewere obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). For experimental tests, ADNI1
Complete 3Yr 1.5T data of ADNI is chosen. This dataset
contains T1-weighted sagittal MR images. There are 2182
image items with .nii format and size of 44.16 GB which is
provided as Archived, NIFTI, MINC, and Analyze options.
After downloading the dataset, an image pre-processing is
applied at three steps:

1. Converting images from .nii format to .png format with
Python code: In this step, there are 166 frames exported
from each .nii image, and twomiddle images were chosen
(number 83 and number 84) from each image item.

2. Splitting the dataset randomly with Python code: In this
step, the images are separated as AD, MCI, and CN sub-
clusters. From these sub-clusters, train and test images are
chosen randomly with the rate of 90% and 10%, respec-
tively.

3. Resizing and splitting train and validation images: In this
step, inside the model program before training, the train
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ADNI 
DATABASE 2182 Image Item

4364 MR Images

4306 MR Images

3876 MR Images 430 MR 
Images

3490 MR Images 386 MR 
Images

DATA CLEANING

TRAIN 90%

TRAIN 90%

TEST 10%

VALIDATION 10%

IMAGE EXTRACTION

IMAGE ACQUISITION

Fig. 1 Image pre-processing steps

Table 1 Summary of the dataset

Type CN MCI AD Total

Number of patients 135 148 99 382

Male patients 66 105 52 223

Female patients 69 43 47 159

Mean of age 77.24 75.63 75.81 76.23

Mean of visits 4.20 4.30 3.32 3.94

Number of images 1476 1924 906 4306

Train images 1196 1560 734 3490

Validation images 132 172 82 386

Test images 148 192 90 430

images are split into train and validation images randomly
with the rate of 90% and 10%, respectively. Besides, all
images are resized to 224 × 224 resolution.

The processes of acquiring images, image extraction, data
cleaning, and splitting the images into train, validation, and
test datasets are shown in Fig. 1.

The summary of the dataset is shown in Table 1 after
applying image pre-processing steps to the dataset.

It is seen in Table 1 that there is a total of 382 patients con-
sisting of 223male and 159 female patients in the dataset. The
number of CN, MCI, and AD labeled patients is 135, 148,
and 99, respectively. The mean age of patients is 76.2. Data
cleaning was performed on 4364 MR images obtained after
the image extraction process was performed, and 58 inappro-
priate images were cleared from the database. As a result,
experiments were carried out on 4306 images. 430 (10%)
of these images were randomly selected as test data, which

was separated as data that the models would not see during
training. Of the remaining 3876 images, 3490 (90%) images
were used for training and 386 (10%) images were used for
validation. Sample MRIs belonging to all three classes are
shown in Fig. 2.

To analyze the data used in the study, DNN architectures
created with the CNN algorithm were used. In the structure
of the CNN algorithm, there are various layers and functions
such as convolution layers, pooling layers, fully connected
layers, activation functions, and dropout layers. In models
designed using this algorithm, many parameters such as the
number of layers, activation functions, dropout rate, and loca-
tions, the number of epochs, batch size, learning rate, and
optimizationmethod are determined by the programmer who
created the model. Researchers can create their models or
work on the data using the weights of previously created
(pre-trained) models with the transfer learning method. In
real-world applications, it is hard or sometimes impossible to
achieve or re-collect enough data for training a CNN model.
Also, overfitting and convergence issues are the potential
problems that may be faced with for training a deep CNN.
For this reason, the transfer-learning approach should be pre-
ferred to solve these kinds of problems [43]. A sample CNN
structure is shown in Fig. 3.

In the convolutional layer, each unit is connected to local
patches in the featuremaps of the previous layer through a set
of weights called a filter bank; thus, an organized featuremap
units are created. All units in a feature map share the same
filter bank. Different feature maps in a layer use different
filter banks [44]. The convolution of two functions ( f ∗ g)
in the finite range [0, t] is defined as Eq. (1) [45].
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Fig. 2 Sample MRIs of a AD, b CN, c MCI classes

Fig. 3 A sample CNN structure

[ f ∗ g](t) ≡
∫ t

0
f (τ )g(t − τ)dτ (1)

In Eq. (1), [ f ∗ g](t) means the convolution of the functions
f and g. Convolution is taken in an infinite range mostly as
calculated Eq. (2) [45]:

[ f ∗ g] ≡
∫ ∞

−∞
f (τ )g(t − τ)dτ

=
∫ ∞

−∞
g(τ ) f (t − τ)dτ (2)

Although kernel filter was defined as 11 × 11 in AlexNet
and 7 × 7 in ZFNet, nowadays mostly 3 × 3 and 5 × 5
filters are being used in the literature in convolution lay-
ers. Angular edges, dark/light transition forms are evaluated
and calculated separately as features with different edge
detection filters. Here mathematically, the filtering opera-
tion performed by a feature map is a discrete convolution,
which is giving the name to the algorithm. The result of this
locallyweighted sum then passes through a nonlinearity such
as a sigmoid (Eq. 3), TanH (Eq. 4), and rectified linear unit

(ReLU) (Eq. 5).

Sigmoid f (x) = 1

1 + ex
(3)

TanH tanh(x) = 2

1 + e−2x − 1 (4)

ReLU f (x) =
{0 f or x<0

x f or x≥0
(5)

Another activation function called softmax is widely used
in the last layer of CNNs. The standard softmax function:
σ : RK → [0, 1]K is defined by Eq. (6) [46,47]:

σ(z)i = ezi∑K
j=1 e

z j
f or i = 1, ..., K and

z = (z1, ..., zK )ERK (6)

and applies the standard exponential function to each element
zi of the input vector z and normalizes these values by divid-
ing by the sum of all these exponentials. The normalization
ensures that the sum of the components of the output vector
σ(z) is 1. These nonlinear (activation) functions are used to
control the output value of a neuron to decide whether a neu-
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ron will be active or not. In this respect, activation functions
are an important feature for DNNs.

The purpose of the pooling layer is to reduce the image
size by processing with an n × n matrix filter to reduce the
computational cost. It is not a mandatory layer for the CNN
algorithm, and some models may not use this layer. In this
layer, a filterwith the determined size is passedover the image
according to the determined number of strides. As a result of
this process, a reduced newmatrix occurs.Maximumpooling
and average pooling layers are the most used ones. Besides,
there are other pooling methods such as mixed pooling, LP
pooling, stochastic pooling, and spatial pyramidpooling [48].

Overfitting is an important problem for ML and DL. The
dropout technique reduces overfitting, thus improving the
performance of NNs. Normally, learning with backpropaga-
tion can adapt the model to the training data, but this learning
may not be generalized to test data. Random dropouts inside
the model can break these adaptations and improve the test
results.

Dropout technique is general for different applications and
was found to improve the performance of NNs in a wide vari-
ety of application domains such as object classification, digit
recognition, speech recognition, document classification, and
analysis of computational biology data. Feed-forward NN
with dropout is described as [49]:

r (l)
j ∼ Bernoulli(p),

ỹ(l) = r (l) ∗ y(l),

z(l+1)
i = w

(l+1)
i ỹl + b(l+1)

i ,

y(l+1)
i = f (z(l+1)

i ).

(7)

where lE(1, . . . , L − 1) index is the hidden layers of the
network, i is hidden unit, z(l) denotes the vector of inputs
into layer l, y(l) denotes the vector of outputs from layer,
W (l) and b(l) are the weights and biases at layer l, and f is
an activation function, ∗ denotes an element-wise product,
r(l) is a vector of independent Bernoulli random variables
each of which has probability p.

At the end of the CNN structure, usually, the fully con-
nected (FC) layer operates on a flattened input where each
input is connected to all neurons. FC layers can be used to
optimize objectives such as class scores [50]. The output of
the FC layer is normalized by the softmax activation func-
tion, which provides positive numbers that sum to one and is
utilized to derive the output probabilities of the classification
layer that uses the calculated probabilities to assign the input
to one of the mutually exclusive target classes and computes
the loss [51].

Although special models that offer efficient solutions for
different applications are frequently developed in the litera-
ture, the basis of DL lies in the adaptability of a solution to

other problems. For this reason, studies conducted with DL
models, especially in recent years, have gradually evolved
toward studies conducted on pre-trained models. These stud-
ies either directly use the weights of pre-trained models
or produce solutions with additional layers by using these
weights with the transfer learning method. Pre-trained CNN
models were used in the study. The architectural structure
and parameter details of the models are given in Table 2.

The hyper-parameters to be used in the algorithm in DL
studies are mostly determined by trial and error depending
on the intuition of the programmer, previous studies, the
structure of the algorithm, the type and size of data, and sim-
ilar reasons. The hyper-parameters used in this study were
determined as follows, by trying many different alternatives
with optimum options without disrupting the structure of
the pre-trained models. In all models, a standard structure
was created. Since the final layers of the selected pre-trained
models were designed according to 1000 classifications
in ImageNet competition, the output data were gradually
reduced to classify the images used in the study as AD, CN,
and MCI, andDense layers were added to 512 and 3, respec-
tively. Dropout layers were added between these layers to
prevent overfitting and its value was determined as 0.5 to
avoid inconsistent results. The optimizer is set asAdamwith a
default learning rate. Categorical cross-entropy was chosen
for the Loss parameter, and accuracy was chosen as met-
rics. Training processes consisting of standard 250 epochs
were carried out for the models. This number of epochs was
determined with repetitive tests to stop the training and opti-
mize the hyper-parameters before an overfitting condition
occurred. In all models except NasneNet, images were pro-
cessed with 224 × 224 × 3 image format, only NasneNet
structure was planned in 331× 331× 3 structure, so the data
in this model were trained in the specified dimensions. The
final weights of the models were saved during the training
and validation phase and tested on data that were reserved for
testing which the models had never seen. Thus, the reliability
of the test results of the models was ensured. The framework
created for the training of models and test matches in the
study is shown in Fig. 4.

To use the DLmodels onMRIs, Kaggle, which is a crowd-
sourced platform for data scientists to solve data science,ML,
and predictive analytics problems [52], and Google Colabo-
ratory (or Colab), which allows to write and execute arbitrary
python code for ML, data analysis, and education with com-
puting resources including graphic processor units (GPUs)
[53], were used. TheDLmodels were trained using theKeras
Applications DL librarieswith Tensorflow in the Python pro-
gramming language on these platforms. After the operation
of the models, graphics and weights were recorded and the
accuracy and loss parameters of the models were visualized.
To evaluate the performance of themodels,ConfusionMatri-
ces were also created.
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Table 2 Details of the models

N. Model Size Top-1 & Top-5 Acc Model params Depth TPoAD TDMpT

1 Xception 88 MB 0.790 0.945 22,910,480 126 72,189,227 66.67

2 VGG16 528 MB 0.713 0.901 138,357,544 23 27,561,795 62.50

3 VGG19 549 MB 0.713 0.900 143,667,240 26 32,871,491 66.67

4 ResNet50 98 MB 0.749 0.921 25,636,712 – 74,916,867 62.5

5 ResNet101 171 MB 0.764 0.928 44,707,176 – 93,935,107 83.33

6 ResNet152 232 MB 0.766 0.931 60,419,944 – 109,601,795 116.67

7 ResNet50V2 98 MB 0.760 0.930 25,613,800 – 74,901,635 70.83

8 ResNet101V2 171 MB 0.772 0.938 44,675,560 – 93,911,171 79.17

9 ResNet152V2 232 MB 0.780 0.942 60,380,648 – 109,570,179 104.17

10 InceptionV3 92 MB 0.779 0.937 23,851,784 159 47,984,803 75

11 InceptionResNetV2 215 MB 0.803 0.953 55,873,736 572 73,939,043 104.17

12 MobileNet 16 MB 0.704 0.895 4,253,864 88 28,899,139 58.33

13 MobileNetV2 14 MB 0.713 0.901 3,538,984 88 34,388,563 58.33

14 DenseNet121 33 MB 0.750 0.923 8,062,504 121 32,646,019 70.83

15 DenseNet169 57 MB 0.762 0.932 14,307,880 169 54,232,963 70.83

16 DenseNet201 80 MB 0.773 0.936 20,242,984 201 66,263,939 91.67

17 NASNetMobile 23 MB 0.744 0.919 5,326,716 – 30,727,957 83.33

18 NASNetLarge 343 MB 0.825 0.960 88,949,818 – 334,512,665 362.5

19 EfficientNetB0 29 MB – – 5,330,571 – 36,122,239 62.5

20 EfficientNetB1 31 MB – – 7,856,239 – 38,627,875 66.67

21 EfficientNetB2 36 MB – – 9,177,569 – 43,026,949 75

22 EfficientNetB3 48 MB – – 12,320,535 – 49,233,451 91.67

23 EfficientNetB4 75 MB – – 19,466,823 – 62,508,363 112.50

24 EfficientNetB5 118 MB – – 30,562,527 – 79,723,059 95.83

25 EfficientNetB6 166 MB – – 43,265,143 – 98,540,507 116.67

26 EfficientNetB7 256 MB – – 66,658,687 – 65,099,731 150

27 AlexNet 298 MB 0.633 0.846 – 8 26,042,435 66.67

28 ZFNet – 0.64 0.853 – 7 23,650,243 70.83

29 LeNet 539 MB – – – 7 47,172,099 58.33

TPoAD: Total Parameter of ADNI Data

TDMpT: Training Duration Minutes per Training

3 Results

To ensure the accuracy and reliability of the study, fivefold
verification training was applied to all models, and data were
recorded in separate files during the training, validation, and
testing stages. These results were then combined for each
model, and the mean values and standard deviations of the
models were calculated. The graphics of the results of the
models were analyzed comparatively over the average values
of the five tests. In the study, a very comprehensive analy-
sis process was carried out by evaluating the performances
of 29 different models in total as seen in Table 2. Among
these 29models, ResNet 50V2-101V2-152V2, InceptionV3,
InceptionResNetV2, DenseNet 121-169-201, NASNetMo-
bile, NASNetLarge, andZFNetmodels are excluded from the

comparison stage because they have an accuracy rate under
50% during the training. Due to the low performance of these
11 models, accuracy and confusion matrix evaluations were
continued on the remaining 18 models. The first situation
that needs to be explained in the results of these excluded
models is that certain model groups do not produce efficient
results on brainMRIs.While the performance of the first ver-
sions of the ResNet models reached certain rates, the models
arranged asV2could not achieve this performance. Similarly,
all DenseNet and NASNet models could not achieve success
on these images. Interesting findings have emerged for the
ZFNet and Inception models. Although the ZFNet model
was established by making minor changes to the AlexNet
model, it did not reach the level of performance that AlexNet
provided. Interestingly, the Inception model did not achieve
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Fig. 4 Train, test, and comparison framework

the same success on MRI, although it previously achieved
success in PET images, which are a different type of brain
image.

After removing thesemodels from the test and comparison
set, the results obtained with the remaining models continue
as follows. A single training graph was created for each
model by calculating the means and standard deviations of
the recorded training accuracies. The training curves of the
remaining 18 models are shown in Fig. 5, respectively.

Although almost all of the models shown in Fig. 5 per-
formed a learning leap with vertical acceleration before the
first 50 epochs, the number of epochs was determined as 250
since the learning increase of other models except ResNet
models continues. This number of epochs was determined as
the cutoff point before themodelswere overfitted the data and
applied to all models.Within the training curves, theAlexNet
model achieved better accuracy training than the EfficientNet
models (Fig. 5a), while the EfficientNet models decreased
their performance fromB0 toB7 (Fig. 5a–c).While theLeNet
model (Fig. 5d) showed the best performance in the training
graph of themodels, theXceptionmodel (Fig. 5f) showed the
lowest performance. ResNet, VGG 16-19, and MobileNet &
V2 models achieved similar training performance.

Standard deviation results have also been an indicator of
the consistency of the models in training. Standard deviation
charts of the models are shown in Fig. 6, respectively.

As seen in Fig. 6, the standard deviations of all mod-
els except the Xception model (Fig. 6f) have been realized
between 0 & 0.02, proving that the models show consistency
in each training. In the Xception model, again a low standard
deviation curve was observed, remaining between 0.08 &
0.04. The models that gave the most consistent results from
each training process were VGG models (Fig. 6f), ResNet
models (Fig. 6e), LeNet, and MobileNet models (Fig. 6d)
among the models. While the AlexNet and EfficientNetB0-

B1 models showed more consistent results than the other
series of the EfficientNet models, the B6 model (Fig. 6c)
showed the most emission among the EfficientNet models.

The loss function is an important indicator because it is
used to measure the inconsistency between the predicted
value and the actual label. The loss layer of a NN compares
the output of the network with the ground truth for the case
of image processing [54]. The choice of the loss function
is critical for model estimation and evaluation [55]. The loss
function used in the study is determined as categorical cross-
entropy and calculated as in Eq. 8:

Loss = −
Output Si ze∑

i=1

yi log ỹi (8)

where ỹi is the i−th scalar value in themodel output, yi is the
corresponding target value, and the output size is the number
of scalar values in the model output. In this context, yi is the
probability that event i occurs and the sumof all yi is 1,mean-
ing that exactly one event may occur. The minus sign ensures
that the loss gets smaller when the distributions get closer to
each other. Since the Softmax is the only activation func-
tion recommended to use with the categorical cross-entropy
loss function [56], it is used in these study models. Given
the importance of the loss function, it is clear that the esti-
mation and evaluation phases of a model are inextricably
linked. If the loss function affects the model specification,
estimating a model under one loss and evaluating it under
another amount, changing the model specification without
allowing the parameter estimates to be adjusted [57]. The
robustness of the model increases with decreasing value of
the loss function, and the loss value approaching zero inANN
is specified as the desired state. In addition to the accuracy
graphs, the loss parameters of themodels were also evaluated
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Fig. 5 Train accuracy curves of the models

Fig. 6 Train accuracy standard deviation curves of the models

in the study. Loss values of the models are shown in Fig. 7,
respectively.

The Xception model produced the lowest performance
results in the accuracy charts as seen in Fig. 5 and also
produced the highest loss value in loss charts (Fig. 7f). Effi-
cientNetB7model (Fig. 7c) produced the second highest loss
value. An important case has emerged for the LeNet model

that while high accuracy was achieved in the training phase
of this model (Fig. 5d), the loss graph showed a fluctuat-
ing course (Fig. 7d) and produced a negative result for the
consistency of the model accuracy. In loss charts, the lowest
values were obtained from ResNet models (Fig. 7e). After-
ward, a ranking was formed as MobileNet models, VGG
models, AlexNet, and EfficientNetB0-B7 models. The loss
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Fig. 7 Loss curves of the models

Fig. 8 Standard deviations of loss curves of the models

value revealed by AlexNet also continued with oscillation in
its graph. Another remarkable result is that the loss values of
the EfficientNet models increased from B0 to B7.

The models achieved success by showing low loss rates,
and these results were compared in detail during the testing
stage. With the loss function, the stability of the models is
verified by evaluating the standard deviations of the values

obtained in each epoch in the fivefold verification stage in a
similarway to the accuracy values. Standard deviation graphs
of loss values are shown in Fig. 8, respectively.

As seen in Fig. 8, the standard deviation values of the
loss function of the models in the study showed consistency
by remaining between 0 and 0.05 except for the two mod-
els. Among the two models, the Xception model showed
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Fig. 9 Feature extraction. a
Input Image. b 1st Layer. c 5th
Layer. d 10th Layer. e 15th
Layer

consistency by showing a 0.1 standard deviation (Fig. 8f).
However, the LeNet model produced a discrepancy with the
standard deviation rate increasing of oscillations as the num-
ber of epochs increased (Fig. 8d). To decide the performance
of this model, the results of the test stage were examined.
Apart from the two models, the standard deviation rates of
AlexNet, EfficientNetB0-B1 (Fig. 8a), MobileNet models
(Fig. 8d), and ResNet models (Fig. 8e) were determined as
the most consistent models. After these models, there were
VGG models (Fig. 8f) and Efficient B7-B3-B5-B4-B2-B6
models, respectively (Fig. 8b,c).

Testing was carried out on the recorded weights of the
models after the training and validation stages. The testing
process is important in terms of the accuracy results that the
models will produce after training. It is the most important
indicator of the performance of the models on the images.
During the testing stage, the automatic feature extraction
process that takes place in layers of the CNN architecture
was also recorded. Sample images were also saved from the
feature map created in layers such as the input layer, and the
1st, 5th, 10th, and 15th layers in CNNmodels by filtering the
image in the dataset and are shown in Fig. 9.
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Table 3 Test results of the models

N. Model Accuracy SD Loss

1 AlexNet 89.95% 0.0132 0.0167

2 EfficientNetB0 92.98% 0.0095 0.0316

3 EfficientNetB1 91.91% 0.0135 0.0336

4 EfficientNetB2 90.88% 0.0076 0.0524

5 EfficientNetB3 90.93% 0.0114 0.0393

6 EfficientNetB4 88.33% 0.0217 0.0481

7 EfficientNetB5 89.91% 0.0145 0.0674

8 EfficientNetB6 89.49% 0.0088 0.0804

9 EfficientNetB7 87.12% 0.0065 0.1497

10 LeNet 87.72% 0.0114 0.1655

11 MobileNet 83.40% 0.0220 0.0208

12 MobileNetV2 80.19% 0.0183 0.0192

13 ResNet50 88.56% 0.0102 0.0145

14 ResNet101 86.98% 0.0097 0.0289

15 ResNet152 87.77% 0.0147 0.0289

16 VGG16 89.72% 0.0058 0.0324

17 VGG19 89.77% 0.0082 0.0307

18 Xception 77.40% 0.0404 0.3151

In the study, the results of the test process separated from
the images obtained from the ADNI database and performed
on the data that the models have never seen before are shown
in Table 3.

When the test accuracy rates of these 18models are exam-
ined in Table 3, the EfficientNetB0model showed the highest
performance with 92.98% accuracy on the test data. This
model is followed by EfficientNetB1 (91.91%), Efficient-
NetB3 (90.93%), and EfficientNetB2 (90.88%), respectively.
Thus, EfficientNet models verified the performance curves
in the test phase which they showed during the training and
produced a reliable and valid result. The models ranked at
89% accuracy rate were AlexNet, EfficientNetB5, VGG19,
VGG16, and EfficientNetB6 models, and the accuracy rates
of these models were 89.95%, 89.91%, 89.77%, 89.72%,
and 89.49%, respectively. Other models provided accuracy
ranging from 88% to 77%. Among the models, the lowest
performance rate was seen in the Xception model (77.4%).

When the standard deviations of the results obtained by
subjecting the models to the fivefold verification test were
examined, it was observed that all models showed a standard
deviation between 0 and 0.02, except forXception (0.04), and
produced consistent results in each test. In the loss parameter,
another performance indicator of the models, the lowest rate
with 0.0145 was shown by the ResNet50 model. However,
the accuracy rate of this model did not support the model
performance to the same extent as 88.56%. Although the
EfficientNetB0 model, which has the highest accuracy rate,
produces a loss value that cannot be considered lower than

0.0316 other models, this value is considered to be close to
zero and a successful value. The accuracy, loss, and standard
deviation graphs of the test results of the models are shown
in Fig. 10.

Among all models, EfficientNet models achieved promis-
ing results with general performance conditions. It is thought
that the performance of thesemodels can be further increased
through transfer learning methods. Thus, it has been proven
that the models prepared for object classification will also be
successful in medical image processing.

In the last part of the test stage, the confusion matrixes
of all models were created and their precision, recall (sen-
sitivity), and specificity values were calculated. This matrix
has contributed to an in-depth study of each model’s perfor-
mance on images of each class. These values are calculated
as Eq. (9):

Precision = T P/(T P + FP)

Recall(Sensi tivi t y) = T P/(T P + FN )

Speci f ici t y = T N/(T N + FP)

(9)

where TP is true positive, FP is false positive, TN is true
negative, and FN is false negative. Precision is a measure of
how accurately all classes are predicted. It is also known as
positive predictive value. Recall can be defined as the ratio
of the total number of correctly classified positive examples
divide by the total number of positive examples. Specificity
indicates when it is actually negative and how often does it
predict negative [35].

The confusion matrix was produced by the weights of the
models after each training was recorded, and the average of
5 matrixes was taken after the fivefold verification training.
Thus, integrity has been achieved with the previous train-
ing and testing phase. The values are not rounded to avoid
variation in the number of images used to test the models.
This is the justification for the floating number in the number
of images belonging to the classes. These floating sections
were also taken into account in the calculation of the values.
The three values of each model belonging to each class are
calculated and shown in Table 4.

Among the confusion matrix values, the models that pro-
duced the highest results for all classes were determined.
Among these models in the sensitivity field, EfficientNetB2
(94.42%), EfficientNetB1 (94.35%), and EfficientNetB0
(94.34%) models took place, which produce very close rates
in the “AD” class. In the “CN” class, B3 (94.87%) and B1
(94.18%) took the first two places among the EfficientNet
models, while the VGG16 model (92.91%) took the third
place. In the “MCI” class, B0 (94.25%) and B4 (89.25%) of
the EfficientNet models took the first and third places, and
the second was LeNet (90.65%).
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Fig. 10 a Accuracy, standard deviation, and b loss results of the test phase

Table 4 Confusion matrix of
the models

Model Predicted Class Actual Recall Precision Specificity

AD CN MCI (Sensitivity)

AlexNet AD 76 5.6 8.4 91.79% 84.44% 95.97%

CN 2.4 133.2 12.4 89.52% 90.00% 94.74%

MCI 4.4 10 177.6 89.52% 92.50% 93.78%

EfficientNetB0 AD 80 13.8 4.2 94.34% 81.63% 94.90%

CN 1.6 139.6 6.8 86.17% 94.32% 96.96%

MCI 3.2 8.6 180.2 94.25% 93.85% 95.22%

EfficientNetB1 AD 80,2 1,4 8,4 94.35% 89.11% 97.16%

CN 1,8 132,8 13,4 94.18% 89.73% 94.74%

MCI 3 6,8 182,2 89.31% 94.90% 95.66%

EfficientNetB2 AD 77.8 4.4 7.8 94.42% 86.44% 96.49%

CN 1.6 133.4 13 90.63% 90.14% 94.84%

MCI 3 9.4 179.6 89.62% 93.54% 94.60%

EfficientNetB3 AD 80.8 2.6 6.6 88.60% 89.78% 97.28%

CN 3.6 129.4 15 94.87% 87.43% 93.66%

MCI 6.8 4.4 180.8 89.33% 94.17% 95.08%

EfficientNetB4 AD 74.8 6.2 9 84.81% 83.11% 95.55%

CN 4.4 133.2 10.4 88.45% 90.00% 94.70%

MCI 9 11.2 171.8 89.85% 89.48% 91.54%

EfficientNetB5 AD 77.6 5.6 6.8 93.95% 86.22% 96.43%

CN 3 125.6 19.4 91.15% 84.86% 92.33%

MCI 2 6.6 183.4 87.50% 95.52% 96.10%

EfficientNetB6 AD 78.6 5 6.4 88.31% 87.33% 96.66%

CN 3.4 130.4 14.2 90.18% 88.11% 93.83%

MCI 7 9.2 175.8 89.51% 91.56% 93.07%

EfficientNetB7 AD 77.2 4.2 8.6 87.53% 85.78% 96.26%

CN 5.2 122.8 20 88.60% 82.97% 91.35%

MCI 5.8 11.6 174.6 85.93% 90.94% 92.33%
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Table 4 continued Model Predicted Class Actual Recall Precision Specificity

AD CN MCI (Sensitivity)

LeNet AD 77 5.2 7.8 81.40% 85.56% 96.12%

CN 8.4 129.6 10 89.38% 87.57% 93.54%

MCI 9.2 10.2 172.6 90.65% 89.90% 91.90%

MobileNet AD 67.2 11.6 11.2 84.85% 74.67% 93.50%

CN 4.4 127.2 16.4 80.00% 85.95% 92.32%

MCI 7.6 20.2 164.2 85.61% 85.52% 88.33%

MobileNetV2 AD 62,2 13 14,8 77.75% 69.11% 92.06%

CN 7,8 113 27,2 81.65% 76.35% 88.00%

MCI 10 12,4 169,6 80.15% 88.33% 89.74%

ResNet50 AD 76.8 5.6 7.6 86.88% 85.33% 96.14%

CN 6.2 127.6 14.2 88.98% 86.22% 92.88%

MCI 5.4 10.2 176.4 89.00% 91.88% 93.27%

ResNet101 AD 69.6 10.2 10.2 89.23% 77.33% 94.20%

CN 2.6 135.2 10.2 83.25% 91.35% 95.22%

MCI 5.8 17 169.2 89.24% 88.13% 90.52%

ResNet152 AD 73.8 6.6 9.6 89.56% 82.00% 95.34%

CN 5.2 129.2 13.6 86.13% 87.30% 93.29%

MCI 3.4 14.2 174.4 88.26% 90.83% 92.43%

VGG16 AD 77.4 3.2 9.4 91.71% 86.00% 96.35%

CN 4 125.8 18.2 92.91% 85.00% 92.46%

MCI 3 6.4 182.6 86.87% 95.10% 95.72%

VGG19 AD 72.6 5 12.4 93.80% 80.67% 95.06%

CN 1.2 133.2 13.2 90.98% 90.24% 94.92%

MCI 3.6 8.2 180.2 87.56% 93.85% 94.73%

Xception AD 52.2 18.4 19.4 82.86% 58.00% 89.70%

CN 4 110.6 33.4 76.70% 74.73% 86.91%

MCI 6.8 15.2 170 76.30% 88.54% 89.38%

In the precision field, the first three models in the
“AD” class were EfficientNetB3 (89.78%), EfficientNetB1
(89.11%), andEfficientNetB6 (87.33%)models,which again
produce very close rates. In the “CN” class, EfficientNetB0
(94.32%) tookfirst place,whileResNet101 took secondplace
with 91.35%, and the VGG19 model took third place with
90.24%. In the “MCI” class, B5 (95.52%) and B1 (94.90%)
of the EfficientNet models took the first and third places, and
the VGG16 (95.10%) model was found in the second place.

Finally, in the field of specificity, the first three models
in the “AD” class were EfficientNetB3 (97.28%), Effi-
cientNetB1 (97.16%), and EfficientNetB6 (96.66%) models,
which again produce very close rates. In the “CN” class,
EfficientNetB0 (96.96%) took first place, while ResNet101
was the second with 95.22%, and the VGG19 model was
third with 94.92%. In the “MCI” class, B5 (96.10%) and B1
(95.66%) of the EfficientNet models took the first and third
places, and the second was the VGG16 (95.72%) model.

In light of all these results, it is clear that EfficientNet
models perform better on brain MRIs than other pre-trained
models. In itself, although it shows different rates between
classes, there is not much difference between them. Besides,
VGG models also produced locally successful results on
certain classes of images. Therefore, applying EfficientNet
models directly or through transfer learning in future studies
will produce promising results in clinical studies.

4 Discussion

Due to the acceleration of ML and DL studies in the last
decade, these techniques have been emphasized in medical
image processing studies as in many other fields. Particu-
larly in recent years, segmentation and classification studies
havebeen carried out usingDL techniques.Althoughmedical
image processing mainly covers segmentation studies, clas-
sification studies have also become widespread. The success
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of AI algorithms in this regard is also seen as the biggest
factor. Classification studies about Alzheimer’s disease are
shown in Table 5.

As seen in Table 5, studies aimed at classifying the stages
of Alzheimer’s disease have gained momentum, especially
in recent years. While different ML and DL techniques
are applied in these studies, the results of the studies vary
between 70% and 95%. For example, the CNN algorithm
achieved 83% and 93% performance in one study [32], while
the same algorithm achieved performance results varying
between 73% and 91% in another study [31]. While SVM,
one of the ML algorithms, performed 85% in one study [15],
it gave results varying between 70% and 92% with hybrid
methods in another study [25]. Another ML algorithm RF
has reached 91%–92% rates with hybrid methods in dif-
ferent studies [23,25]. While InceptionV3, a DL algorithm,
achieved sensitivity and specificity rates between 82% and
100% on PET images [33], in this study, it was excluded
from the evaluation because it was below 50% accuracy dur-
ing training. Except for one of the studies shown in Table 5,
all of the othersworked on less than 1000 images, andmost of
them worked on a small number of images. Moreover, some
of these images (10%–20%) were reserved for the validation
phase. In some studies, test images were not included in the
training, and in some, validation results during training were
given as a result due to a low number of images.

In this study, the accuracy rates of varying between 90%
and 93%on theMRIs that the EfficientNetmodels have never
seen, and positive results between 90% and 97% in sensi-
tivity, specificity, and precision values have been indicative
of the usability of these models in future clinical studies.
Nowadays, the importance of common valid models that can
be adapted to more than one dataset, instead of a single
model suitable for a single dataset, has increased. For this
reason, it has become important to transfer models that have
proven their success in different classification competitions
to medical image processing. With the very comprehensive
and comparative analysis carried out in this study, steps have
been taken to prevent the diversity and difference shown in
Table 5.

Since the process of learning from the representation of
data takes place inDL techniques, studies conducted onmore
data give more consistent and accurate results. In this study,
more images were studied in terms of consistency of the
results, and at the same time, a real prediction process was
carried out by not using the test data by the model during
the training. A step was also taken to avoid inconsisten-
cies in different methods used in the literature. Considering
that DL studies have evolved into transfer learning today,
it is important to determine the most dominant model and
models to be used in biomedical image processing and clas-
sification processes among models that have proven their
success in different image classifications. Instead of subject-

and situation-specific models, common models should be
created and transferred to future studies and used here. Espe-
cially considering the small number of images in the field of
medicine and the difficulty of image acquisition and process-
ing, it is important to identify models that give common and
reliable results in different imaging techniques.

The study has some limitations. The first and most impor-
tant of these is the need for a large number of images in DL
studies, and in addition, the difficulty of obtaining images
in the field of biomedical image processing. Moreover, the
ethical approval process in the field of individual image
acquisition in the field of biomedical image processing is
also long. For this reason, a global database was used in the
study. However, biomedical images in these databases are
often not sufficient for DL studies. Another limitation of the
study is the hardware requirement in DL studies. Tools that
allow the use of onlineMLandDLalgorithms are often either
time-limited or there are problems such as disconnections
during use. Therefore, many tests need to be done repeat-
edly. Finally, it is the problem of viewing images presented
in formats such as NIFTI and DICOM by opening them for
those who work outside the medical field and do not have
certain programs. For this, a solution has been produced by
writing a separate program that opens the image sequence
and takes the middle two images.

5 Conclusion

This study is important in terms of its scope, comparative
framework, reliability, and consistency of its results. It has
been presented as an exemplary study for the use of DL algo-
rithms, which are becoming increasingly common in every
field, in the field of medical image processing. In the study,
unlike previous similar studies, not only on a single model
or a few models but a comparative and comprehensive anal-
ysis process was carried out on all models that have proven
their success in different categories in international important
competitions and on all models offered to use in DL libraries.

The study has guiding and inspiring contributions to
both creating decision support systems in medical research
and transfers learning research in the field of DL. Human-
intensive studies are carried out to make quick decisions in
clinical studies. The lack of expertise causes the processes to
be prolonged. In clinical research, getting fast results with the
success of DL models, which are one of the sub-disciplines
of AI, will both facilitate the work of experts and pave the
way for getting more accurate results. Besides, a study was
carried out in the field of DL, which will contribute to pre-
venting the emergence of different and data-specific models
every day, and foreseeing the dissemination of models from
specific to general. Because in the DL discipline, the main
purpose is to establish common models that can give reliable
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results in different datasets, not just a single model suitable
for a single data.

Another contribution of the study to the field was the
determination of the use of DL models in biomedical image
classification as well as in object identification. Thus, by
avoiding the confusion of different models in biomedical
image processing, a guiding study was carried out in new
studies. Similar studies can be tested with different image
sequences such as T1-w, T2-w, and FLAIR, as well as with
different planes such as coronal and axial, and the perfor-
mances of the models can be compared. Thus, comparative
options will be presented to researchers for early diagnosis
of the disease. Because of the increasing number of different
types of biomedical images, the need for standardmodels that
produce common solutions has arisen.This study is presented
not only as a comparative study but also as a comprehensive
classification study in termsof scope.Classificationwith high
accuracy rates has been carried out to determine the stages
of Alzheimer’s disease, which is important enough to be in
the top 10 in the list of fatal diseases in the world and to take
precautions before reaching the point that cannot be reversed.
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